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Introduction

LECTRODYNAMIC tethers are expected to be a viable and
efficient means for generating power or controlling the orbit of
future spacecraft.! = For cases where the tether current is not explic-
itly controlled for orbital maneuvering, then the long-term dynamic
behavior of the tether librations must be controlled. The control of
electrodynamic tethers on inclined orbits is important because of
the inherent instability provided by the electric current.® It has been
conclusively established that, even for a tether modeled as an inelas-
tic rod, the variation in electrodynamic forces over an orbit causes an
influx of energy into the libration dynamics. Although, for the most
part, the instability is slow to develop, it must be controlled for long-
term operations. There exists a unique libration cycle, however, for
which the net energy input per orbit is zero. Such a libration cycle
is a periodic solution to the equations of motion for the system.’
The periodic solution is unstable, with instability growing with the
electric current.® Periodic solutions have also been determined for
tethers including the lateral dynamics.® The instability in the lateral
dynamics grows at a faster rate than the librational instability. The
effect of orbit eccentricity was shown by Pelaez and Andres® to
amplify the unstable nature of the dynamics. Corsi and Iess'® con-
sidered a simple control scheme to stabilize the tether librations for
deorbiting applications. Hoyt!! has described schemes for stabiliz-
ing flexible electrodynamic tethers during deorbit by periodically
measuring the motion of several points along the tether to estimate
the oscillation energy, and adjusting the control input accordingly.
The application of electromagnetic forces for directly controlling
the librational motion has also been considered.'>~'> Control of the
unstable skip-rope motion during retrieval was shown to be effec-
tively suppressed by Williams et al.'” if a movable attachment point
is used to damp the lateral oscillations of the electrodynamic tether.
In Ref. 16, Pelaez and Lorenzini addressed the issue of control-
ling the librations of an electrodynamic tether around the periodic
solution. Their approach consisted of two linear feedback control
schemes. The first was simple proportional feedback for the in- and
out-of-plane libration rates, and the second was a delayed-feedback
version of the same controller. However, the implementations of
these controllers were assumed to be independent, where it was
suggested that control could be achieved using movement of the
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tether attachment point. This might not be as efficient or effective
as utilizing the electric current itself to provide the feedback. The
purpose of this Note is to explore the possibility of controlling the
librations of an electrodynamic tether around the periodic solution
using modulations in the electric current. The control law is derived
as anonlinear feedback controller, whose stability is examined using
Floquet’s theory for different current levels and control gains.

System Model

In this work, the tether model adopted by Pelaez and Lorenzini'
is used. In this model, the mother satellite is assumed to remain in
a circular orbit, and the tether is modeled by a rigid rod undergoing
forced librations caused by the electric current. For more generality,
the nondimensional parameter ¢ = f, I u,,/u(m; +m,/3) is used,
where f, is a parameter governing the distribution of electric current
along the tether, / is the current, u,, is the magnetic field strength,
is the gravitational constant of the Earth, m; is the subsatellite mass,
and m, is the tether mass. Essentially, the parameter ¢ governs the
ratio of torque caused by electrodynamics to the torque as a result
of gravitational forces.

Under these assumptions, the kinetic and potential energy of the
tether are given by
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where () =d/d(wt) is the nondimensional time derivative. The
application of Lagrange’s equations leads to the equations of motion
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The generalized forces appearing in Egs. (3) and (4) are derived
elsewhere.'® Equations (3) and (4) have periodic solutions that can
be obtained by Poincare’s method of the continuation of periodic
orbits.

Control Law

In the absence of electrodynamic forces, the Hamiltonian of the
system is constant and is defined according to

0T 0T
H= 0’ - T+V 5
50 + 3 ¢’¢ + (5)
In nondimensional form, this is evaluated as
H = %¢/2 + %9/2 cos> ¢ — %(0082¢+3C0829C052 ¢) (6)

This can be interpreted as the energy of the librational motion rela-
tive to the mother satellite. For an electrodynamic tether, energy is
continuously being pumped into or removed from the system as a
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result of the electric current. The time derivative of Eq. (6) can be
determined using Eqgs. (3) and (4) as

H = Q46 cos” ¢+ Qy¢’
= ¢{¢'(2sinvsind + cos v cos f) sini
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For a periodic orbit, the net energy input into the system is zero.
Hence, we can define the reference energy flux according to

Hyer = Eref Eret ®
where
Erer = ¢lop(2sin v sin Orep + cOS v €OS Orer) sin i
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A feedback controller is proposed of the following form
& = refll = k(E — Eqer) Ever SigN et ] (10)

where k is a feedback gain. The effectiveness and stability of this
control law is analyzed using Floquet’s theory.

Numerical Computations

The reference periodic trajectories in this Note are determined us-
ing the method of continuation of periodic trajectories. A predictor-
corrector strategy developed in Ref. 17 is used. The stability of
the closed-loop solution can be assessed by using Floquet’s theory
for periodic systems. The stability of the solution is governed by
the magnitude of the eigenvalues A of the monodromy matrix. The
monodromy matrix is formed by integrating the perturbed linear
equations of motion in matrix form with the initial conditions equal
to the identity matrix. The eigenvalues are calculated from the solu-
tion of the differential equations at v = 277 For this system, we have
four eigenvalues. If the modulus of all eigenvalues are less than one,
then the system is stable. However, if one of the eigenvalues has a
modulus greater than one, then the system is unstable.

The stability properties of the control law were evaluated for
0 <& < 1.5 and for orbit inclinations from 5 to 80 deg in increments
of 5 deg. Values of k from 0 to 1000 were compared. In this range,
for certain configurations and nominal current levels there are no
stable solutions. This is particularly true for large inclinations and
large nominal €. For the sake of brevity, only a case study of the or-
bit inclination 45 deg is performed in this Note. Figure 1 shows the
results of a stability analysis of the closed-loop system for varying
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Fig. 1 Stability regions for nonlinear control law for 45-deg inclina-
tion: a) complete region showing upper and lower bounds and b) close-
up of lower bound.
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Fig. 2 Moduli of eigenvalues of the monodromy matrix vs the control
gain k for 45-deg inclination and € =1.5.

levels of the control gain k. For this orbit inclination, the control
gain is sensitive to both low values and large values, depending
on the nominal value of &. For example, for very small values of
¢ there is virtually no upper limit on the control gain for stability.
However, as the value of ¢ is increased, there is a lower threshold
for the control gain above which the closed-loop solution is stable,
but below which the system is unstable. A close-up of the curve
is shown in Fig. 1b. As an example, for ¢ = 1.5 the control gain
k > 0.3 for the system to be stable. However, there is also an upper
bound on the control gain, shown in Fig. 1a. The upper bound is
both practically and dynamically desirable because too high a con-
trol gain could cause the tether to “flip” over or commence rotation.
In a practical sense, the level of current is restricted by physically
important parameters such as the ionospheric density of the ambi-
ent environment, temperature of the tether, and so on. Hence, the
electric current could not be forced at such large levels that would
likely correspond with such high values of k. Therefore, the lower
bound on k is of more practical importance than the upper bound.
Figure 2 illustrates the typical behavior of the closed-loop system
for high nominal current levels. For small values of the control gain,
there are two complex conjugate eigenvalues of the monodromy
matrix, one of which has a moduli greater than one. At a critical
value of £ =0.2988, the system becomes stable, and the moduli of
the eigenvalues decrease. At k =1.84, one of the complex eigen-
values splits into two real eigenvalues. A similar branching occurs
at k =2.2. However, one of the branches from k = 1.84 eventually
becomes unstable at k = 9.86, which represents the upper bound on
the control gain for this nominal current level.

To assess the closed-loop behavior of the nonlinear system, nu-
merical simulations have been performed starting with the initial
conditions perturbed randomly from the periodic solution. The or-
bit inclination is 45 deg, and the nominal value of ¢ is 1.5. For the
sake of brevity, only one example simulation is shown in Fig. 3. The
initial perturbations to the initial conditions for this case were

80 = —12deg, 36" = 0.176

8¢ = 1.78 deg, 3¢’ = —0.09 (11)
The plotin Fig. 3, showing the trajectory for 20 orbital revolutions to-
gether with the reference trajectory, illustrates the excellent closed-
loop behavior of the system even for this large perturbation from the
periodic solution. The closed-loop trajectory approaches the peri-
odic solution in only a few orbits and eventually tracks the periodic
solution with negligible error. Figure 4 shows the corresponding
nondimensional control parameter. This shows that the control cor-
rections near the beginning of the simulation are relatively large, but
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Fig. 3 Closed-loop simulation of electrodynamic tether with large ini-
tial perturbation, inclination 45 deg (20 orbits).
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Fig. 4 Control parameter vs orbits, inclination 45 deg.

as the system begins to track the periodic solution with greater pre-
cision the control requirements are very modest. Thus, tracking the
periodic reference trajectories using only electric current variations
superimposed on the nominal mission current might be a viable
means for controlling the librational dynamics of electrodynamic
tethers.

Conclusions

A nonlinear control law for tracking periodic reference trajecto-
ries for electrodynamic tethers on inclined orbits has been devel-
oped. The control law uses feedback of the difference in the libra-
tional energy rate of the real system from the reference periodic
trajectory. The stability of the closed-loop system was analyzed us-
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ing Floquet’s theory, which shows two unstable regions for an orbit
inclination of 45 deg. One unstable region occurs for very low values
of the feedback gain parameter, and another occurs for very large
values of the feedback gain parameter. In a practical sense, only the
lower unstable region is of interest. Numerical simulations of the
controlled nonlinear system demonstrate the ability of the control
law to track the reference periodic trajectories.
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